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Summary. The ground state total energy and related 1-electron properties are 
computed for three small molecules ( N »  H20,  and H2CN) using several 
systematic sequences of  wavefunctions which approach the full CI. These se- 
quences include multireference CI, averaged coupled pair functional and 
quasidegenerate variational perturbation theory wavefunctions. It is demon- 
strated that sufficient regularity exists in the sequence of variationally computed 
energies to permit extrapolation to the full CI limit using simple analytic 
expressions. It is furthermore demonstrated that a subset of  the original list of 
configurations employed in the normal singles and doubles CI procedure can be 
selected using second order perturbation theory without adversely affecting the 
extrapolation to the full CI limit. This significantly broadens the range of  
applicability of  the method. Along these lines, a scheme is proposed for the 
extrapolation of  the selected CI results to the zero threshold (i.e. unselected) 
values in cases where the numbers of configurations associated with the latter 
would render the calculations intractable. Due to the vast reduction in the 
number of  configurations which are handled variationally, the proposed scheme 
makes it possible to derive estimates of the full CI limit in cases where explicit 
full CI is either very difficult or currently impossible. 

Key words: CI limit - Systematic sequences of wavefunctions - Wavefunctions, 
full CI limit 

1 Introduction 

The use of  ab initio methods to address questions of chemical importance 
has increased dramatically over the past four decades. This growth has been 
fueled by (1) the widespread availability of computer programs which permit 
even nonspecialists to access sophisticated computational models and (2) the 
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continuous improvement in high speed computer hardware which makes the 
implementation of these models practical. Paralleling the increased use of ab 
initio methods among chemists in general has been a trend among theoreticians 
to push for significantly higher levels of agreement with experiment, especially 
for small molecules. For the sake of the present discussion we can define "small" 
as those systems having 50 electrons or less. Among the developments which 
have proven helpful in this drive for increased accuracy area  series of dramatic 
improvements in our ability to perform full configuration interaction (FCI) 
calculations [ 1]. Such wavefunctions represent the exaet solution of the molecular 
Schrödinger equation within a fixed 1-particle basis set. 

Unfortunately the factorial growth in the number of configurations with both 
basis set and number of electrons renders FCI intraetable for all but very small 
systems. The necessity of having to deal with enormous numbers of configura- 
tions often forces researchers to use basis sets of limited flexibility which offer 
little hope of reproducing experiment. In cases of high symmetry some of these 
limitations may be relaxed. Even so, FCI calculations require enormous quanti- 
ties of computer time and memory on some of the fastest machines presently 
available. For example, a recent 10-electron FCI on the Mg atom carried out in 
a [4s, 3p, 2d, l f ]  basis generated over a billion determinants and required ap- 
proximately three weeks of supercomputer "wall clock" time to achieve better 
than milihartree convergence in the total energy [2]. 

FCI results are increasingly referenced in order to benchmark the accuracy of 
more approximate methods. As mentioned above, this benchmarking is done, of 
necessity, with somewhat limited basis sets. If favorable agreement is found with 
small basis sets it is often argued by inference that similar behavior should be 
expected as the basis set is enlarged. Recent calculations of the dissociation energy 
of N 2 s e r v e  to illustrate this approach. Bauschlicher and Langhoff [3] performed 
a FCI calculation in the nitrogen 2p space with a double zeta + polarization 
(DZP) basis in order to evaluate the performance of the multireference singles and 
doubles CI method based on complete active space self-consistent-field orbitals 
(CAS-SCF/MR SD-CI) and the coupled pair functional (CPF) method. Aside 
from comparing the two approximate methods to the exact result, few conclusions 
could be drawn regarding theory's ability to reproduce experiment sinee the DZP 
basis was inherently capable of no better than 1 eV accuracy. This represented an 
error of 10% relative to the experimental D« (9.9 eV [4]). After its reliability was 
established at the DZP level, the MR SD-CI method was employed by 
Bauschlicher and Langhoff with greater confidence using more elaborate basis 
sets. The same approach was taken by Almlöf et al. [5] in an attempt to compute 
D« to within so-called "chemical accuracy", i.e. to within 0.043 eV or 1 kcal/mol. 
More recently, even larger 10-electron FCI calculations were used by Werner and 
Knowles [6] to calibrate the "internally contracted" CI method for N 2. 

To the best of our knowledge the DZP basis set work of Bauschlicher and 
Taylor [7] on HF, CH2, and SiH 2 is the only report in the literature of 1-electron 
properties evaluated at the FCI level with a nontrivial basis set. As an adjunct to 
their extensive FCI studies focusing on energy differences, they analyzed the 
dipole moment and polarizability properties. The former was the only first-order 
property studied. For the purposes of the present work the reported dipole 
moments were judged to converge so rapidly with respect to even modest levels 
of correlation recovery as to provide poor choices for study. For example, at the 
SD-CI level (or 2-configuration reference space CI level for lA 1 C H 2 )  the 
computed properties were already in excellent agreement with the FCI values. 
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We have chosen instead to examine the N2, H20 and H2CN systems in hopes 
that they might better illustrate certain features of the convergence of energy and 
properties to the full CI. 

Studies, such as the ones just mentioned of N2, fall into the category of 
ù methods calibration" since the quantity being computed, i.e. the dissociation 
energy, was never in question. The goal of these studies was to learn something 
about the ability of various computational models to reproduce experiment. The 
importance of "methods calibration" stems from our inability to assign useful a 
priori error bars in ab initio methods. At present the only way to establish confidence 
in a computational method is to document its ability to reproduce experiment or 
more accurate calculations over a broad range of problems. Since FCI results 
represent the exact values of whatever property is being sought, it is desirable to 
be able to estimate full CI energies and 1-electron properties for as wide a fange 
of systems as possible, including systems which cannot currently be treated by 
explicit FCI with basis sets that systematically approach a complete basis set. 

The present methods evolved from the pioneering work of Buenker and 
Peyerimhoff [8] who have long advocated the combined use of configuration 
selection and energy extrapolation techniques. However, Buenker and Peyer- 
imhoff have traditionally used much smaller reference spaces and smaller CI 
spaces. The present work also differs in that it suggests an explicit functional 
form with which the sequence of energies (or properties) can be fit. 

A related method is the CIPSI technique of Malrieu and coworkers [9] which 
is based on a division of the configurations into three sets, related to their 
importance in the wavefunction. The numerous small contributions to the total 
energy are estimated via second order perturbation theory. Illas et al. [ 10] have 
recently compared the CIPSI method against full CI results for first row atoms 
(B-F)  and the BH and FH hydrides. With relatively small basis sets containing 
a single shell of polarization functions, the agreement was within 1 millihartree. 
The present work, by emphasizing the sequence of wavefunctions and their 
corresponding energies (and properties), seeks to avoid questions of how accu- 
rate any one specific calculation might be. If more accuracy is required then 
another point along the sequence, i.e. a larger calculation, may be required as 
input to the proposed extrapolation procedure. 

In the approach recently suggested by Harrison [11] the full CI energy is 
estimated by combining very large reference spaces and second order perturba- 
tion theory. In comparison with the present methods, the reference spaces used 
by Harrison are more than an order of magnitude larger. This, in turn, requires 
that he must consider much larger configuration spaces in the perturbation 
theory part of the calculation and, to the extent that properties are desired, the 
wavefunction which is obtained by diagonalizing the reference space may not be 
sufficiently accurate. His approach does offer the advantage that in its current 
implementation it runs in parallel. 

In this work calculations were performed on three small molecules (N» H20, 
and H2CN) with a variety of basis sets ranging from a simple "split valence" set 
on up to a "quadruple zeta" level with multiple polarization functions. While all 
three molecules are well described by a single configuration, as judged by the size 
of the leading coefficient in the CI expansion, this should not be construed as 
implying rapid, monotonic convergence for every property. The goal we are 
seeking, the FCI energy and properties, could only be explicitly computed for N2 
with the smallest basis. However, the split valence + polarization (SVP) and 
DZP basis set FCI energies were available in the literature for N2 and H20 and 
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may serve as a guide in measuring the degree of convergence for our sequence of 
wavefunctions. Because of its importance in so many aspects of chemical 
research we shall first focus on the total energy. Then we will proceed to examine 
various charge and spin density 1-electron properties. 

We will examine the convergence characteristics of several systematic se- 
quences of wavefunctions in order to determine if sutIicient regularity exists to 
permit useful extrapolation to the full CI limit. This implies the ability to 
perform calculations which are computationally tractable yet provide estimates 
of the full CI limit within acceptable limits. What is judged "acceptable" will 
obviously depend upon one's perspective. In one context "acceptable" might 
imply the ability to predict energies and properties with relatively high precision 
for use in benchmarking other methods. In another context less precision might 
be acceptable, in light of far larger effects due to basis set truncation errors. For 
example, an error in the extrapolated full CI dipole moment of ___ 0.02 a.u. might 
be more than "acceptable" when it is known that basis set improvements would 
change the value by, say, 0.2 a.u. Highly precise but inaccurate values are seldom 
of importance. Ultimately, the values which quantum chemists would most like 
to be able to compute are those associated with a complete basis set full CI. 

2 Choosing a systematic sequence of wavefunctions 

It is not difficult to construct sequences of wavefunctions which asymptotically 
approach a full CI. Some obvious examples include: 

(i) CI truncated at progressively higher excitation levels. This approach suffers 
from the rapid increase in the number of excitations, which go as: 

where n is the excitation level, 2K is the number of spin orbitals and N is the 
number of electrons. This number becomes extremely large for even small 
molecules with moderate sized basis sets and high excitation levels. If this sequence 
is truncated too quickly the size consistency error may be unacceptably large. 

(ii) CAS-SCF with erer larger active orbital spaces. Although in common 
practice CAS-SCF avoids dealing with the enormous numbers of configurations 
normally associated with full CI, by limiting the range of orbitals into which 
electrons will be excited, it too quickly suffers from the same disastrous growth 
in the size of the problem as a function of K and N. Furthermore, by including 
aß possible excitations consistent with a given number of electrons and orbitals 
the CAS-SCF method may be forced to include large numbers of configurations 
which have no significant effect on the energy or properties. 

(iii) Perturbation theory (PT) carr&d out to increasingly higher order. While this 
approach has the advantage of size consistency a potential disadvantage lies with 
the slowness in convergence of the perturbation theory expansion or potential 
for it to fail to converge at all. 

Although each of these methods can in principle approximate the full CI, an 
important aspect which taust be considered is the efficiency with which they 
converge. If a given sequence fails to significantly reduce the amount of com- 
puter time relative to the actual FCI calculation, it will be of little use. 
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We choose a sequence of wavefunctions to approach the full CI as follows: 
a minimal list of  configurations (known as the "reference space") capable of  
providing a qualitatively correct zeroth order description of  the system is identified 
and a CI wavefunction consisting of  all single and double excitations from each 
configuration in this list is then generated. For  cases where the H F  configuration 
dominates the wavefunction, as it does for all three molecules included in the 
work, this translates into the normal HF SD-CI. The CI wavefunction is ordered 
on the magnitude of the expansion coefficients and the first few (say 5-15) most 
important configurations serve as the new reference space out of  which all single 
and double excitations are taken in order to form a new CI wavefunction. This 
new wavefunction, in turn, serves as a pool out of  which the reference space is 
again augmented (say by doubling its size) and all single and double excitations 
are again generated. The whole process is repeated until effective convergence is 
achieved or computational resources are exhausted. For  processes involving more 
than one state of the same the symmetry, selection of the reference space 
configurations can be made on the basis of  more than one root. 

Eventually, as the reference space grows in size there will come a point at 
which it is no longer possible to variationally handle all the single and double 
excitations. With the present hardware and software that point was reached at 
approximately one million configurations. In order to proceed, a technique is 
used to select the energetically most important double excitations. Several kinds 
of  a priori selection have already been implied, but these correspond to selections 
of  certain whole classes of  excitations from the full CI list. For  example, in any 
multireference CI calculation configurations are "selected" on the basis of  what 
configurations are in the reference space and the fact that we limit excitations to 
no more than doubles. However, in this paper we shall use the term "selected 
CI"  to refer to calculations in which we explicitly select a subset of the double 
excitations using a technique like second order perturbation theory. 

All single excitations are automatically kept. While their effect on the energy 
of  closed shell systems is not large, they have a significant impact on many 
1-electron properties. It might be assumed that by selecting a subset of  the 
double excitations we would necessarily suffer a marked deterioration in the 
computed results relative to the unselected calculation. Such is not the case. As 
will be discussed later, the errors introduced by configuration selection, when 
performed with sufficiently small selection thresholds, will often be no larger 
than the errors resulting from other approximations, such as the use of finite 
basis sets or the truncation of  the CI expansion. Methods for partially compen- 
sating for the "selection error" will also be described. 

In order to efficiently select the most important configurations from a list 
which can easily number into the rens of miUions the selection is made on the 
basis of  second order perturbation theory, where the estimated importance of  
configuration " i "  is given by [(~bi [H[ ~o)[2/(Ei- E0), for a zeroth order wave- 
function, ~0, täken as the lowest root of the reference space. For  each choice of 
reference space up to five individual calculations were performed with succes- 
sively smaller thresholds (Te -- 10 5, 10-6, 10-7, 10-8, and 0.0). 

In fact, in the present work it became impossible to perform the zero 
threshold calculations with some of the largest basis sets and reference spaces. 
However, most calculations were in the 10,000-300,000 configuration range, 
with the largest variational calculation including about 970,000 configurations. 
The lists of  configurations to be scanned by perturbation theory varied widely 
depending upon the size of  the reference space and the basis set. Typically they 
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were several hundred thousand to one million in length, with the largest being on 
the order of 35 million configuration state functions (CSF's). 

In our procedure each of the sequences of wavefunctions generated by 
increasing the reference space size for a fixed selection threshold must converge 
to the full CI since the reference space eventually includes all possible configura- 
tions. Of course this can only occur if the choice of reference space is based on 
a procedure which simultaneously reduces the selection threshold as the reference 
space increases. Otherwise it is conceivable that all configurations which con- 
tribute more than some threshold, say 10 -» hartree, are already included in the 
reference space and the process of generating the hext larger list of configurations 
could not proceed. In practice even with the largest of the thresholds used in this 
study we were far removed from a situation where this failure might happen. 

It is of interest to investigate the manner in which the variationally computed 
energies and properties of these systematic sequences of wavefunctions approach 
the full CI limit for eases where the latter is known. If simple expressions can be 
found to fit the behavior of the energy and properties as they approach the FCI 
values and these expressions are capable of predicting the limiting values within 
"chemical accuracy" (~< 1 kcal/mole for the energy) then reasonable estimates 
may be possible for much larger basis sets where explicit FCI is impossible. 

CI convergence was accelerated through the use of frozen natural orbitals 
(FNO's), i.e. natural orbitals which preserve the HF occupied space [12]. 
Alternatively one could have employed orbitals generated by an MCSCF proce- 
dure or a transformation of the virtual space known as K-orbitals [13]. The use 
of FNO's has both positive and negative effects. On the one hand, the number 
of configurations required to recover a certain fraction of the correlation energy 
is often reduced by a factor of 2 or more. But, on the other hand, the number 
of CI iterations required to reach convergence is often increased by 30-50%. 

The choice of which orbitals to use becomes irrelevant as the wavefunction 
closes in on the FCI wavefunction since the FCI is invariant to orthonormal 
transformations among the molecular orbitals. However, for some of the more 
severely truncated CI's in a sequence of wavefunctions certain types of orbitals 
may produce irregularities in a property's convergence pattern, making extrapo- 
lation difficult. An examination of these effects was considered outside the scope 
of the present work. 

All wavefunctions and properties were computed with the MELDF-X suite 
of programs [14]. All runs were performed on local workstations rated at 
~< 4 MFlops with approximately 1 Gbyte of scratch disk space. Unless otherwise 
noted, the properties were computed as expectation values since a large number 
of them were desired for each wavefunction. Past experience [7] has shown there 
to be little difference between the use of a finite field approach for evaluating 
properties and the expectation value approach with wavefunctions of the type 
used here. In the fuU CI limit the two sets are identical. Total energies were 
converged to 10-7 hartree to insure adequate convergence in the properties. Only 
the 5 spherical components of the 6 Cartesian d's (or 7 components of the 10 
cartesian f ' s ,  etc.) were used in the basis sets. Calculation on N2 utilized D2h 
symmetry, while calculations on H20 and H2CN were carried out in C2v symmetry. 

No claim is made that any of the proposed sequences of wavefunctions or 
choice of selection criterion represents the optimal choice for any particular 
property. Given the desire to examine the simultaneous convergence behavior of 
many properties associated with each wavefunction in this sequence, the use of 
an energy selection criterion was judged, on the basis of previous experience with 
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selected CI, to be about as effective as other choices which have been tried over 
the years. 

In terms of the total energy, it is possible to roughly gauge the efficiency of 
our procedure by comparing it to the popular CAS-SCF/MR SD-CI technique. 
The most extensive internally contracted CI reported by Werner and Knowles [6] 
in their study of the dissociation energy of Nz involved a 175 configuration 
reference space that generated 87,152 singles and doubles. This reference space 
and the CAS-SCF configuration space used to optimize the orbitals were 
produced by considering all possible excitations of 10 electrons among 8 orbitals. 
The authors made no mention of how many configurations were actually 
handled in the variational part of the contracted CI, but the energy was reported 
as -109.2565 hartree. Using the same basis set and geometry (to be described 
below) it was possible to obtain a slightly lower energy ( - 109.2580) using just 
35 reference configurations and 39,353 singles and doubles. If  configuration 
selection is performed on the 35-configuration reference space list of singles and 
doubles the number of configurations can be out to only 22,500 with the loss of 
less than a millihartree in energy. It should be noted that the internally 
contracted CI method is only an approximation to MR SD-CI and the basis set 
used here was relatively small. Nonetheless, the preceding comparison demon- 
strates that our choice of wavefunctions is on par with or somewhat better than 
other choices found in the current literature. 

3 N 2 

N2 has a long tradition of serving as a test bed for new theoretical methods. 
Although its wavefunction is dominated at Re by the HF  configuration, the 
presence of a triple bond makes for a difficult correlation problem. The molecule 
possesses an extra 0.04 hartree of correlation energy compared to other first row 
diatomics, such as the isoelectronic carbon monoxide molecule. We chose N2 
because it presented a difficult challenge for the CI method and because of the 
availability of a very large full CI calculation with which we could compare our 
results. 

3.1 Energy 

In Fig. 1 the energies resulting from four sequences of CI wavefunctions, 
corresponding to selection thresholds of 10-»-10 -7 and 0.0, are plotted against 
the sum of the squares of the reference configuration CI coefficients, Sc 2. All 
calculations used the Dunning-Hay  [ 15] SV basis set. This parameter serves as 
a crude indicator of the quality of the reference space, with typical values lying 
in the range of 0.91-0.93 for HF SD-CI's. For MR SD-CI's with very large 
reference spaces ~c 2 can approach values as large as 0.95-0.98. Eventually, as 
the reference space continues to enlarge, all possible configurations are contained 
in it and ~c~ z = 1.0. Unless otherwise noted, all N2 calculations were done at a 
bond distance of 2.1 bohr, which is close to the experimental value of 2.074 bohr 
[16] and was used in previous studies of this diatomic. 

Several features of Fig. 1 deserve comment. As will become more apparent in 
subsequent figures for larger basis sets, configuration selection has the smallest 
impact for the smallest reference space. The four points at Zc~ = 0.92, based on 
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Fig. 1. Convergence of the N2 (12~+) 
valence CI energy (R = 2.10ao) with 
respect to the sum of the squares of the 
reference contigurations' CI coefficients 
using a [3s, 2p] basis. Second order 
perturbation theory selection of 
configurations was performed with 
thresholds of T = 10 -5, 10 -6, 10 - 7 ,  and 
0.0. The SD + Q curve is based on the 
Davidson corrected CI energies 

a single (HF)  configuration reference spaee, are nearly indistinguishable. How- 
ever, as the reference space expands and Zc 2 increases the four sequences begin 
to diverge, with the largest T = 0 ~ T = 10 -5 difference (0.0034 hartree) occur- 
ring with the largest reference space. The largest reference space contained 62 
spin-adapated configurations and generated 12,320 single and double excitations. 
By way of  contrast, the full CI wavefunction contained over 500,000 configura- 
tions, but its energy was only 0.0005 hartrees lower than the MR SD-CI energy 
assoeiated with the largest reference space. 

A simple estimate of the contribution from higher order excitations not 
explicitly included in perturbation theory or the variational CI leads to the curve 
labeled "SD + Q" in Fig. 1. It was obtained by augmenting the CI energies with 
an additional term based on one form of the "Davidson quadruples correction" 
[17]: 

AEQ : AEso(1 - Zc~) / (2Sc~  - 1) 

where AEsD is the energy lowering for the unselected C! relative to the zeroth 
order energy, E0, the eigenvalue associated with 710 . A slightly simpler expres- 
sion, 

AEQ = AEsD(1 -- •c 2) 

produces somewhat better agreement with the N2 full CI energy when the values 
of Sc~ are greater than 0.94, but gives worse results for smaller values. Given the 
qualitative spirit of  this correction it often performs better than expected, 
especially in the vicinity of the equilibrium geometry [ 18]. The accuracy of  the 
AEsD( 1 -~_,c~) estimate has been observed to sometimes vary considerably with 
bond length [1]. Nonetheless, the ESD+Q energies provide another sequence 
which may potentially yield information about the degree of  convergence of  the 
calculations. 

The smooth behavior of the T = 0 energies in Fig. 1 suggests the possibility 
of using the truncated CI energies associated with the MR SD-CI wavefunctions 
in order to extrapolate to the FCI energy. Several simple functional forms were 
considered for fitting the data. On the basis of the appearance of  Fig. 1 we 
initially tried functions of the form: 

f ( S c ~ )  = a + b* exp[«*(1 - 2;c2)] 

g(Zc 2) = a + b* exp[c*(1 - Zc~)2]. 
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It is readily seen that with these functions the extrapolated FCI energy is simply 
given by (a + b). Furthermore, the slope of the exponential at ~c 2 = 1.0 is -b*c  
whereas the gaussian approaches 1.0 with zero slope. 

In Table 1 the results of the fit of the CI energies with the exponential and 
gaussian functions are compared with ESD+ Q as weil as the full CI energies 
(where available). For each of these fits there are three entries corresponding to 
different weights used. The first entry was obtained with no weighting, while the 
second and the third correspond to weighting factors of 1 / (1 -Xc~)  and 
1/(1 - Z c 2 )  2 respectively. It should be noted that higher powers of the quotient 
1/(1 -Xc/2) can in principle be used to weigh the points near to 1 more severely. 
However, this is not recommended when all available points are in the range 
0.90-0.95. In almost every instance the use of a weighting factor has little effect 
on the extrapolated FCI energy. 

The degree to which the two functional forms mimic the behavior of the 
computed energies is demonstrated by the fact that if all 6 N2 SV basis set data 
points, including the full CI, are included in the fitting procedure the value of both 
functions at S,c~ = 1.0 differs by approximately 0.0002 hartree. The RMS standard 
deviations are on the order of 0.0001. As can be seen from Fig. 2, both fits are 
nearly indistinguishable for the SV basis set. However, when fewer data points are 
available for the fit, the exponential function has been generally found to perform 
the best for the cases examined here. The overall quality of the fit is sometimes 
improved if the first data point, corresponding to a simple SD-CI energy for N2, 
is dropped. Nevertheless, for this small basis set the two ESD + Q energies obtained 
from the 15- and 34-configuration reference spaces are both several tenths of a 
millihartree closer to the full CI energy than our extrapolated values. 

As it was mentioned earlier the extrapolated FCI value for the exponential 
and gaussian functions is (a + b). It is reasonable to assume that " a "  represents 
a "ballpark" value of the energy while "b"  represents a refinement to accommo- 
date the exponential behavior. Therefore the value of " a "  is close to the 
computed energies while "b"  is of the order of 0.01 to 0.001. These estimates 
correspond to good guesses for the initial values of the parameters for all 3 
systems reported here. 

Larger basis sets produce qualitatively similar results, as seen in Figs. 3-5. 
The first of these figures shows the results of calculations done with the 
(10s, 4p, l d ) ~ [ 3 s ,  2p, ld] SVP basis set used by Werner and Knowles [6] in 
their study of the N 2 dissociation energy. These authors report a full CI energy 
of -109.2640 + 0.0002 hartree (at Re = 2.12 bohr). The uncertainty results from 
their exploitation of sparsity in the matrix. That calculation involved a massive 
541 million determinants ( >  110 million configurations). In order to compare 
our results with their FCI energy we performed a series of MR SD-CI's at the 
same 2.12bohr bond length. The largest MR SD-CI calculation in Fig. 3, 
T=0.0/137-reference, yielded an energy of -109.2623 and involved some 
109,000 configurations. By employing a configuration selection threshold of 10 -7 
it is possible to obtain an energy only 1 millihartree higher but which contains 
only 40,000 configurations. This latter wavefunction possesses an energy within 
2 millihartrees of EFc~. It recovered 99+ % of the SVP valence correlation 
energy, but employs 2000 times fewer configurations! 

Results from the new Dunning [19] correlation-consistent, polarized valence 
triple and quadruple zeta (cc-pVTZ and cc-pVQZ) sets are shown in Figs. 4 and 
5. In popular notation, the former basis can be denoted (10s, 5p, 2d, l f )  
[4s, 3p, 2d, l f ]  and the latter (12s, 6p, 3d, 2f, lg) ~[5s ,  4p, 3d, 2f, lg]. Due to the 
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T a b l e  1. E x t r a p o l a t e d  full  C I  ene rg i e s  b a s e d  o n  t he  z e r o  t h r e s h o l d  N 2 C I  e n e r g i e s  a 

Basis ~ Pts. L o w e s t  E c l  b ~/o e ES D + Qd Estimated full CI energy Calculated 

Exponential e Gaussian f E (full CI) 

SV 3 -109 .1040 15 - 109.1071 -109 .1057 - 109.1055 
(4 008) s -109 .1057 -109.1055 

- 109.1057 -109 .1055 
4 -109.1061 34 -109.1077 -109 .1074 -109 .1069 

(8 830) -109 .1079 - 109.1070 
-109 .1082 -109 .1070 

5 -109.1068 62 -109.1073 -109 .1076 -109.1071 
(12 320) -109 .1076 -109.1071 

-109 .1076 -109.1071 

SVP 3 - 109.2546 15 -109 .2664 - 109.2616 -109 .2614  
(15 618) -109 .2616 -109 .2614  

-109.2616 - 109.2614 
4 - 109.2580 35 - 109.2659 - 109.2637 - 109.2632 

(39 353) - 109.2638 -109 .2636 
-109 .2639 -109 .2639 

5 -109 .2608 64 -109 .2654 -109 .2646 -109.2635 
(63 091) -109.2647 -109 .2636 

-109 .2649 -109 .2636 
6 -109,2623 137 -109 .2644  -109 .2644 -109 .2635 

(109 279) -109 .2644  -109 .2636 
- 109.2643 -109 .2636  

cc-pVTZ 3 - 109.3599 15 - 109.3777 -109.3743 - 109.3701 
(106 310) -109.3743 -109.3701 

- 109.3743 -109.3701 
4 -109.3648 33 -109 .3777 -109.3753 -109 .3719 

(265 003) -109 .3753 -109 .3720 
-109 .3754 -109 .3720 

5 -109.3693 67 --109.3775 --109.3765 --109.3734 
(512 271) --109.3766 --109.3735 

--109.3767 --109.3735 
6 - 109.3717 h 137 - 109.3762 - 109.3759 --109.3739 

(927 606) --109.3758 -109 .3740 
--109.3758 -109 .3740 

cc-pVQZ 3 -109 .3876 15 -109 .4072 -109 .4004 -109 .3984 
(406 734) -109 .4004 -109 .3984 

-109 .4004 --109.3984 
4 -109.3931 h 33 --109.4075 --109.4038 --109.4006 

( 1  038 284) --109.4040 -109.4007 
--109.4041 --109.4007 

5 -109.3981 h 67 --109.4076 -109 .4062 --109.4025 
(2 049 738) --109.4064 - 109.4027 

-109.4067 - 109.4027 
6 --109.4016 h 136 - 109.4072 - 109.4069 --109.4036 

(3 765 107) --109.4071 --109.4039 
- 109.4072 - 109.4039 

--109.1073 
(527 2 4 8 )  

-- 109.2640 _+ 0.0002 
(110.7 million) 

a Energies are given in hartrees. The full CI energy for the SVP basis is taken f rom the work of  Werner  and Knowles [6]. 
There  are three entries for every fit, corresponding to fitting with no weighting, weighting with 1/[1 - 27c 2 ] and 1/[ 1 - ,~c~ ]2 
b The lowest CI energy used in the fitting procedure 
c The size of  the largest referenee space used int he fitting procedure (in CSF's) 
« E 0 + Davidson Correction (see text) 

(a + b* exp[c*(l - ~c2)]) 
f ( a  + b* exp[c*(1 - 2~c~)2]) 
g The number  of  CSF's in the wavefunction 
h The zero threshold energy was estimated based on calculation at T = 10 - 8  and T = 10 9, as discussed in the text 
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Fig. 2. A comparison of the exponential 
and gaussian fits to the unselected CI 
energies for N2 computed with a [3s, 2p] 
basis 
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Fig. 3. Convergence of the N2 ( 1 ~ ~ - )  

valence CI energy (R = 2.12a0) with 
respect to the sum of the squares of the 
reference configurations' CI coetfieients 
with a [3s, 2p, la'] basis. Second order 
perturbation theory energy selection was 
performed with thresholds of T = 10 -5, 
10 -6, 10 -7, and 0.0. The SD + Q curve 
is based on the Davidson corrected CI 
energies 

Fig. 4. Convergence of the N 2 (1~+)  
valence CI energy (R = 2.10ao) with 
respect to the sum of the squares of the 
reference configurations' CI coefticients 
with the correlation consistent 
[4s, 3p, 2d, l f ]  basis. Second order 
perturbation theory energy selection was 
performed with thresholds of T = 10 -5, 
10 -6, 10 -7, 10 -8, and 0.0. The SD + Q 
curve is based on the Davidson corrected 
CI energies. The T = 0.0 energy at 
~0.97 was estimated by the procedure 
described in the text using calculaüons 
up to and including T = 10 -9 

l a rge  n u m b e r  o f  con f igu ra t i ons ,  the  lowes t  T = 0 p o i n t  fo r  the  c c - p V T Z  f igure  
was  e x t r a p o l a t e d  f r o m  a T = 10 - 9  c a l c u l a t i o n  us ing  a p r o c e d u r e  to  be  descr ibed .  
S imi la r ly ,  the  energ ies  fo r  s o m e  o f  t he  T = 0 w a v e f u n c t i o n s  w i t h  the  c c - p V Q Z  
basis  set were  e s t i m a t e d  by  the  s a m e  p r o c e d u r e .  These  energ ies  a re  be l i eved  
a c c u r a t e  to  __+0.0001 har t ree .  
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Fig. 5. Convergence of the N 2 (1~+) 
valence CI energy (R = 2.10ao) with 
respect to the sum of the squares of the 
reference configurations' CI coefficients 
with the correlation consistent 
[5s, 4p, 3d, 2f, lg] basis. Second order 
perturbation theory energy selection was 
performed with thresholds of T = 10 -5, 
10 6, 10-7, 10-8, and 0.0. The SD + Q 
curve is based on the Davidson corrected 
CI energies. The T = 0.0 energies beyond 
0.93 were estimated by the procedure 
described in the text using calculations 
up to and including T = 10 -9 

Although the data plotted in Figs. 3 -5  are qualitatively the same as those 
obtained with the smaller SV basis, for large r c  2 the effects of  performing 
configuration selection are seen to be even more pronounced. Thus, if one wishes 
to obtain variational energies within some e of the unselected values over a range 
of basis sets, it would be necessary to resort to progressively smaller selection 
thresholds as Zc 2 ~ 1.0 and the size of  the basis set increases. Fortunately, even 
with the largest basis set considered for N2 it is possible to approach within a 
millihartree of the T = 0 energies by employing selection thresholds which still 
left the calculations tractable on our workstations. 

While the unselected (i.e. T - - 0 )  energies have been shown to smoothly 
approach the EFO asymptote, curves derived from selection thresholds of  10 -» 
o r  10 - 6  exhibit two features which make them less useful for any extrapolation 
procedure: (1) a curve passing through these energies shows an inflection point 
and (2) there is a substantial difference in energy relative to the unselected curve. 
As indicated above, the magnitude of  the energy penalty for a fixed threshold 
increases with the size of the reference space and the size of the basis set. The 
smallest threshold used in generating a complete sequence of wavefunctions was 
10 -8. To give an indication of  the size of  the error produced this threshold, the 
largest ET= 0 -  Er=  1.0E-8 difference we encountered was on the order of 0.002 
hartree. As can be seen in Figs. 3-5,  in most cases a threshold of 10 -8 produced 
errors of  less than a millihartree. 

If  necessary, thresholds as small a s  10 -9 can be employed. Such a value may 
still result in substantial reductions in the numbers of configurations which must 
be treated variationally. However, it is not always possible to perform calcula- 
tions with such small thresholds. The reason for our interest in calculations with 
selection thresholds as large a s  10 - 6  lies in the extent to which the numbers of 
configurations are reduced compared to the unselected case. In many cases the 
reduction can amount to several orders of  magnitude or more. 

One way of minimizing the energy penalty associated with performing 
selected CI calculations would be to approximate the discarded energy with 
its second order perturbation theory counterpart, AEpT_discarded, which was 
previously computed in the selection procedure. In practice a straightforward 
appending of AEvr.«i .... ded to the variational energy proved to be too inaccurate 
since perturbation theory typically overestimates AEsD by 20-30%. Alterna- 
tively, one might simply scale AEpT-di . . . .  ded by the ratio of  the variational energy 
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Fig. 6. The variation in the accuracy of 
the second order energy as a funcüon of 
the size of the energy contributions for 
two different basis sets. The accuracy is 
measured by the ratio of the variational 
energy lowering divided by the predicted 
lowering corresponding to the 
configurations kept at a certain selection 
threshold T(E), AEc]/AEr~r.k~pt. Results 
are given for the SVP and cc-pVTZ 
basis sets with several reference spaces. 
The solid curve was obtained by 
performing a least squares fit to the 
log(T) = -8,  -7,  - 6  and -5  SVP 
137-eonfiguration reference space points 

lowering divided by the PT estimate of  the same quantity, AEsD/AEpT.kept, a s  has 
been done for many years by Davidson and coworkers [20]. However, as we will 
see, an improved estimate can be obtained by recognizing that this ratio is a 
function of the size of  the energy contributions. We have found that for a certain 
fange of  energies the application of a fixed ratio scaling may be worse than 
simply using the raw A Er, T.di . . . .  ded" 

As seen in Fig. 6, wbere the ratio SpT = AEsD/AEpT_kept for the configurations 
in the energy range TN ~ TN+~ is plotted against the log of  the selection 
threshold for two different reference spaces, the dependence on log(T) is approx- 
imately exponential. Spv begins with values of  0.7-0.9 for large thresholds and 
increases by almost an order of  magnitude as you go to very small thresholds. 
Similar trends were obtained for H 2 0  and H2CN. 

Since the bulk of  the correlation energy is overestimated by perturbation 
theory, whereas the contributions lying beyond T = 10 -6 are underestimated, it is 
difficult to avoid either overestimating or underestimating EcI (T  = 0) when using 
a simple scaling factor based on a single AEso/AEpT_kept ratio determined with 
respect to the total correlation energy recovered. The last 10-15% of the 
correlation energy contained in the samller threshold ranges represents a nonneg- 
ligible quantity. A slightly more sophisticated approach is needed if greater 
accuracy is sought in the estimated Ec~(T = 0). 

Results shown in Fig. 6 were computed with different reference spaces and 
basis sets. The AEsD/AEpT.kept ratio is plotted against the log of  the selection 
threshold. The solid line, corresponding to a least squares exponential fit to the 
l o g ( T ) = - 8 ,  - 7 ,  - 6  and - 5  points using a function of  the form 
Cl + c2 exp(0.8*N), where N is taken as the absolute value of  log(T), is seen to 
closely approximate the 137-ref. data. Restricting the fit to fewer points produces 
similar results in the large threshold region, i.e. log(T) = - 7  to - 6 ,  where most  
of  the energy is contained. Table 2 shows the improvement in the estimated T = 0 
energies over the simpler scaling procedure. By combining T = 1 0  - 6  variational 
energies with the scaled second order perturbation theory energies it was possible 
to estimate the unselected energies to within 1 millihartree. For  example, the 
estimated T = 0 energies appearing under the " T  = 10 -6 Results" column of  
Table 2 were obtained by adding the scaled PT estimates of  the energy lowering 
in the 10-6-10  -7, 10-7-10  -8 and 10-8-10  -9 energy ranges to EcI(T = 10-6). 
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Table 2. Extrapolation to the unselected N 2 CI energies using second order perturbation theory to estim~ 
the energy contribution from the unselected configurations 

SVP Basis 

T = 10 -6 results T = 10 -7 results 

~o ~ Eci #CSF's  Est. E c I ( T = O )  b E o 4¢CSF's Est. E c I ( T = O  ) E o ( T = 0  

15 --109.2527 6450 -0.2531/--0.2546 --109.2541 11 383 -0.2541/--0.2543 --109.254, 
35 --109.2546 9 129 -0.2555/--0.2589 --109.2572 22 511 --0.2573/--0.2577 --109.257: 
64 --109.2561 10498 --0.2575/--0.2613 --109.2598 39093 --0.2599/-0.2608 --109.260', 

137 --109.2575 14698 --0.2593/--0.2620 --109.2610 40 637 --0.2615/-0.2625 --109.2621 

cc-pVTZ Basis 

T = 10 -6 results T = 10 -7 results 

~o a Eci ~e CSF's Est. E o ( T  = 0) b Eci ~ CSF's Est. E o ( T  = O) EcI(T = ff 

15 --109.3552 14245 --0.3572/-0.3613 -109.3590 44541 --0.3590/--0.3596 --109.359~ 
33 -109.3575 17982 -0.3605/--0.3681 -109.3629 69803 --0.3634/--0.3646 -109.364~ 
67 -109.3595 21 951 -0.3636/--0.3722 -109.3663 89 335 --0.3672/-0.3700 -109.369~ 

136 -109.3612 29 225 --0.3662/--0.3721 -109.3678 102 814 -0.3693/-0.3733 --109.371( 

a The number of configurations in the reference space 
b The estimated zero threshold energy + 109.0. The value estimated by scaling AEi, x_mrow~ away by AE c 
AEpT.kept is given in front of the slash. The second value is based on the "exponential" scaling described i 
the text 
c The number of configurations in the SVP zero threshold calculations are: 15 618, 39 353, 63 091, an 
109 279 for the 15 CSF, 35 CSF, 64 CSF, and 137 CSF reference spaces, respectively 
ä The number of configurations in the ec-pVTZ zero threshold calculations are: 106 310, 265 003, 512 271 
and 927 606 for the 15 CSF, 33 CSF, 67 CSF, and 136 CSF referenee spaees, respectively 

Thus, with an additional loss of 0.0005 hartree beyond that which accompa- 
nied the truncation of the full 110 million CI space to the 100,000 configuration 
(T=0/137-ref.) space, we can achieve a further reduction in the number of 
configurations which must be handled variationally by another factor of 8. In 
terms of the energy, the vast majority of the FCI configurations are of trivial 
importance. 

It is also apparent from Fig. 6 that, as expected, second order perturbation 
theory based on the smaUer 15 configuration reference space does a poorer job 
than the larger reference space, since the AEsD/AEpT_kept ratios deviate more 
from 1.0. If the basis set is increased to the triple zeta + polarization (TZP) 
level the ratlos seem to rise even less steeply as T ~ 0. Therefore, at least for 
the N2 molecule, second order perturbation theory's ability to predict the effect 
of the large number of smaU energy contributions to the variational energy is 
improved by using larger reference spaces and larger basis sets. The improve- 
ment found for the larger basis set is somewhat subtle in that perturbation 
theory actually does a slightly worse job on the first 90% of the correlation 
energy. Improvement is found only for that last 10% comprised of a large 
number of small contributions. 
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Fig. 7. Convergence of the electric field 
gradient at the nitrogen nucleus in N2 
with respect to the sum of the squares of 
the reference configurations' CI 
coefficients 

3.2 Properties 

In general, extrapolating the 1-electron properties to the full CI limit presents 
more of a challenge than extrapolating the total energy due to the fact that there 
is no variational principle at work. They may not approach the asymptotic limit 
monotonicaUy. Furthermore, the selection of configurations on the basis of their 
energy contribution to the wavefunction may be far less efficient for properties. 
Despite these difficulties, in practice we find that most properties converge even 
more rapidly than the energy and in many cases convergence is smooth enough 
to permit the use of a fitting/extrapolation procedure similar to what was 
proposed for the energy. As will be seen there are exceptions to each of these 
statements. For example, the hyperfine spin properties, to be discussed in regard 
to H2CN, appear to converge more slowly than the energy. 

In Fig. 7 the electric field gradient at the nitrogen atom in N2 is plo.tted 
against Xc~, the same independent variable used to plot the energy convergence. 
An exponential expression of the form a + b* exp[c*(1 -Xc2)]  is seen to accu- 
rately fit all available data. The use of a gaussian expression produces nearly 
identical results. On the other hand, the zz  component of the electric quadrupole 
moment, O= shown in Fig. 8, comes within 0.01 a.u. of the apparent full CI limit 
with even a small reference space. As Zc~ increases beyond 0.93 the computed 

E ùo 
CD õ 

8 

- 1 . 2 4  

-1 .26  

- 1 . 2 6  

- 1 . 2 7  

- 1 . 2 8  

-1 .29  

- 1 , 3 0  
0 .90  

N 2  1 ~ ;  CI Resul ts  (SVP Basis )  

I I I i 

• Calculated 
- - 3  Polnt Exp. Fit 

• , , ,  ' ,  • " " 6 POlnt Exp. Fit 

I I I I 
0 .92  0 .94  0 .96  0 .98  1.0 

~Ci2  

Fig. 8. Convergence of the z z  component 
of the quadrupole moment in N 2 with 
respect to the sum of the squares of the 
reference configurations' CI coetticients 
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Fig. 9. Convergence of the zz 
component of the quadrupole moment 
in N 2 with respect to the log of the 
perturbation theory energy selection 
threshold 

O= values seem to wander somewhat and then exponentially approach the 
limiting value as Xc 2 approaches 1.0. In such a case it is possible to extrapolate 
using all existing data points without obtaining a ridiculous estimate, but 
whenever the quantity in question is oscillating the use of  a fitting prodecure 
procedure should be used with care. Indeed, to the extent these two examples are 
indicative of  other properties it would appear that each property must be 
considered individually before a determination can be made about the suitability 
of the data for extrapolation. 

With the total energy is proved possible to estimate the unselected, i.e. T --- 0.0, 
result in cases where it was impossible to explicitly perform the calculation from 
a combination of the selected CI energies and a scaled PT estimate of the energy 
thrown away. For  the properties there is no counterpart because they are 
evaluated as expectation values using the first order density matrix. However, the 
convergence of  the properties is usually quite smooth, as seen in Fig. 9, where the 
quadrupole moment is plotted as a function of the log of the selection threshold. 
Whenever this type of behavior is observed it should be possible to extrapolate 
to the zero threshold limit using one of the functional forms discussed for the 
energy. 

It should also be noted that the error introduced by employing even quite 
large selection thresholds (-,~ 10 -6)  is often less than the basis set truncation 
error. For  example, the estimated full CI quadrupole moment obtained with the 
cc-pVTZ basis is on the order of 0.09 a.u.'s smaller than the full CI value 
obtained with the SVP basis. Further enlarging the basis set, we find an 
additional - 0 . 0 6  lowering associated with the cc-pVQZ set. Thus, each of these 
changes resulting from basis set enlargement exceeds the 0.02-0.04 a.u. error 
resulting from configuration selection. 

Table 3 summarizes our computed and extrapolated findings on Nz.  For this 
molecule the SD-CI properties are all quite close to the estimated full CI values, 
even with the largest basis. For  example, the cc-pVQZ basis set SD-CI quadru- 
pole moment includes more than 70% of  the effects of fuU correlation recovery. 
This is not always the case, as will be seen in the discussion of HzCN. 

4 H 2 0  

Calculations analogous to the ones already described for N 2 were performed 
on the water molecule with a DZP basis. Figure 10 shows the convergence 
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Table 3. Calculated and extrapolated properties for N2(l~+) a 
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SV Basis Set Results SVP Basis Set Results 

SCF SD-CI Full CI SCF SD-CI Est. Full CI 

Energy - 108.8778 - 109.0829 - 109.1073 - 108.9330 - 109.2271 - 109.2640 + 0.0002 b 
O= - 1.785 - 1.980 -2.053 - 1.059 -- 1.246 - 1.296 
(r**2) 40.074 39.917 40.051 39.653 39.474 39.513 
(6)  - 195.514 - 195.457 - 195.425 - 193.512 - 193,532 - 193.509 
(1/r) 21.569 21.579 21.593 21.579 21.613 21.515 
HF Force -0.240 -0.240 -0.242 -0.077 -0.077 -0.079 
EFG -0.890 -0.744 -0.708 - 1.129 -0.964 -0.905 

cc-pVTZ Basis Set Results cc-pVQZ Basis Set Results 

SCF SD-CI Est. Full CI SCF SD-CI Est. Full CI 

Energy - 108.9803 - 109.3283 - 109.3758 - 108.9878 - 109.3554 - 109.4072 
O~~ --0.985 - 1.146 - 1.209 -0.936 - 1.086 - 1.146 
(r**2) 39.449 39.256 39.291 39.524 39.313 39.342 
(6)  - 197.871 - 197.953 - 197.926 -201.597 -201.649 -201.622 
( 1/r ) 21.600 21.646 21.648 21.600 21.643 21.649 
HF Force -0.014 -0.028 -0.032 0.011 -0.002 -0.005 
EFG -1.335 -1.185 -1.113 -1.349 -1.204 -1.130 

"R = 2.10 bohr except for the SVP basis, where R = 2.12 bohr was used for the sake of comparison with 
Werner and Knowles in [6]. Ten valence electron were correlated. The SV basis set results are from an 
explicit full CI. All other results are extrapolated as described in the text. The total energy is given in 
hartrees. Other properties are in atomic units. "HF Force" is the Hellman-Feyman force. EFG = electric 
field gradient 
b From Werner and Knowles [6] 
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Fig. 10. Convergence of the H20 lA 1 
valence CI energy (R = 1.88973a0, 
HOH = 104.5 °) with respect to the sum of 
the squares of the reference configurations' 
CI coefficients with a [4s, 2p, ld/2s, Ip] 
basis. Second order perturbation theory 
energy selection was performed with 
thresholds of T = 10 5, 10-6, 10-7, and 
0.0. The SD + Q curve is based on the 
Davidson corrected CI energies 

b e h a v i o r  in  t h e  t o t a l  e n e r g y  t o  b e  s i m i l a r  t o  w h a t  w a s  o b s e r v e d  f o r  N 2 . T h e  

c o m p u t e d  ful l  C I  e n e r g y  w a s  t a k e n  f r o m  t h e  w o r k  o f  B a u s c h l i c h e r  a n d  T a y l o r  

[21]. T a b l e  4 l i s ts  t h e  r e s u l t s  o f  f i t t i ng  t h e  c o m p u t e d  e n e r g i e s  t o  t h e  e x p o n e n t i a l  

a n d  g a u s s i a n  f u n c t i o n s  d i s c u s s e d  a b o v e .  A g r e e m e n t  b e t w e e n  t h e  c o m p u t e d  

e n e r g i e s  a n d  t h e  fi ts  is e v e n  b e t t e r  t h a n  f o r  N 2 ,  w i t h  s t a n d a r d  d e v i a t i o n s  less  t h a n  
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0.0001 hartree. The extrapolated full CI  energies are seen to be in good  
agreement with the computed  EFc~. The ESD + Q estimates, while in generally 
good agreement,  are somewhat  less accurate than the extrapolations based on 
the exponential, gaussian functional forms. 

A compar ison o f  the results in Table 4 With the related findings reported in 
Harr ison 's  [11] recent work,  shows that  equally low variational energies can be 
achieved by the present methods with much smaller reference spaces. For  
example, the lowest variational energy reported by Harr ison at the equilibrium 
geometry was -76 .2553  and used 24,337 reference configurations. While the 
reference space is the only space which is diagonalized in Harr ison 's  approach,  
the more  than 2 million singles and doubles which were generated represents a 
sizable fraction o f  the 6.7 million configurations in the fuU CI. The first entry in 
Table 4 shows the same variational energy generated f rom only 32 configura- 
tions. The size o f  the matrix which was diagonalized was on the order o f  29,000. 

Estimated full CI  properties for water, obtained with the same procedure used 
for N2, are as follows: #z = - 0 . 8 3 5  a.u., Oyy = 1.847 a.u., ( r  2) = 19.862 a.u., 
( 6 ( O ) )  = - 2 9 5 . 1 6 6  a.u., ( 6 ( H ) )  = - 0 . 3 8 6  a.u., H F  Force(O)  = - 0 . 0 9 0  a.u., 
H F  Force(H)  = - 0 . 0 0 5  a.u., E F G ( O )  = - 1.883 a.u., E F G ( H )  = 0.397 a.u. 

5 H2CN 

Up  to this point  we have considered the 8-valence electron H20 and 10-valence 
electron N2 closed shell systems. Next  we consider the 15-electron H 2 C N  (2B2) 
radical, whose isotropic hyperfine spin properties, aiso, were the subject o f  a 
recent ab initio s tudy  by Chipman et al. [22]. In  that  study the use o f  large basis 
sets and extensive M C S C F / C I  and quadratic CI  [23] calculations failed to yield 

Table 4. Extrapolated full CI energies based on the unselected H20 CI energies obtained with a DZP 
basis a 

EstimatedfuU CI energy Calculated 
Pts .  L o w e s t E c i  b ~0 c ESD+Q d Exponential e Gaussian f E (fuH CI) 

3 -76.2553 32 -76.2577 -76.2564 -76.2563 -76.2566 
-76.2564 -76.2563 
-76.2564 -76-2563 

4 -76.2560 65 -76.2569 -76.2565 -76.2564 
-76.2565 -76.2564 
-76.2565 -76.2564 

5 -76.2562 123 -76.2565 -76.2564 -76.2563 
-76.2564 -76.2563 
-76.2564 -76.2563 

a Energies are given in hartrees. The calculated full CI energy is taken from Bauschlicher and Taylor 
[ 17]. There are three entries for every fit, corresponding to fitting with no weighting, weighting with 
1/[1 - Zc~ 2] and 1/[1 - Zc/2] 2 
b The lowest CI energy used in the fitting procedure 
c The size of the largest reference space used in the fitting procedure (in CSF's) 
« Ecl + Davidson Correction (see text) 
e (a + b* exp[c*(1 - Zc/2 )]) 
f(a + b* exp[c*(1 - 27c/2)2]) 
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quantitative agreement with experiment. For example, the isotropic hyperfine 
constant for hydrogen, a(H), was computed to lie in the range of 50-70 G, 
compared to an experimental value of 87.4 G measured in an Ar matrix at 4 K 
[24]. The primary reason for the remaining error was thought to be the slow 
convergence of the correlation contribution to the properties. Ais o is proportional 
to the unpaired spin density, (6(O)>spin, at the various magnetic nuclei in a 
molecule. With hyperfine spin calculations it is necessary to correlate both core 
and valence sets of electrons, as both contribute about equally to the properties 
and are of opposite sign. Moreover, the core and valence contributions are each 
many times larger than the final answer. 

In the present work we have chosen to extend some of the calculations 
reported by Chipman et al. [22]. Thus, the same two basis sets which were used 
in the MR SD-CI calculations from that study were used here. For the smaller 
of the two sets, which was of DZP quality, we were able to supplement the 
previous findings with new results obtained with larger reference spaces and 
smaller thresholds. For the larger set the reference spaces were taken from the 
previous work, but a slightly different frozen natural orbital basis was used. 

A DZP basis set is probably the minimal level necessary to achieve qualita- 
tive agreement with experiment. Even so, an explicit full CI in this basis would 
involve approximately 1013 configurations. These calculations were performed at 
the optimal restricted HF geometry. Subsequent calculations were carried out in 
a larger 148 function, modified cc-pVTZ set, including extra diffuse functions 
and increased flexibility in the core region [25]. This basis, which can be denoted 
as (l ls ,  6p, 3d, 2f) ~[7s, 5p, 3d, 2f] on C and N and (8s, 3p, 2d) ~[4s, 3p, 2d] 
on H, should be capable of at least semi-quantitative results. The modified 
cc-pVTZ calculations were performed at the optimal cc-pVTZ SD-CI geometry. 

In Fig. 11 the convergence of the CI energy for the DZP basis is plotted as 
a function of Sc~ for a variety of selection thresholds in a manner similar to the 
plots for N2 and H20. In addition, energies obtained from the nonvariational 
averaged coupled pair functional [26] (ACPF) and quasidegenerate variational 
perturbation theory [27] (QDVPT) methods are also plotted. Werner ~tnd 
Knowles [28] have recently compared the ACPF and QDVPT methods with their 
contracted CI technique for the calculation of spectroscopic constants in first 
row diatomics. For the sake of comparison in our study, the same CI-coefficient 
based reference spaces were used for all three sequences of calculations. Some 
experimentation was done with an ACPF-coefficient based reference spaces, but 
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Fig. 11. Convergence of  the H2CN 2B2 
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Table 5. Extrapolatedfull  CI energies based on the H2CNenergies obta inedwith  a DZP basis a 

Esfimatedfull  CI energy 
Pts. Lowes tEc i  b ~o c ESD+Q ä ExponentiaF Gaussian f 

3 -93.7571 76 -93.7735 -93.7733 -93.7666 
-93.7733 -93.7666 
-93.7733 -93.7666 

4 -93.7601 175 -93.7724 -93.7690 -93.7674 
-93.7688 -93.7674 
-93.7686 -93.7674 

5 -93.7620 278 -93.7701 -93.7675 -93.7673 
-93.7670 -93.7668 
-93.7666 -93.7664 

6 -93.7633 375 -93.7690 -93.7671 -93.7667 
-93.7669 -93.7666 
-93.7668 -93.7666 

Energies are given in hartrees. There are three entries for every fit, corresponding 
weighting, weighting with I/[1-2;c/2 ] and 1 / [ 1 -  ~c~] 2 
b The lowest CI energy used in the fitting procedure 
° The size of the largest reference space used in the fitting procedure (in CSF's) 
d Ec I + Davidson Correction (see text) 

(a + b* exp[c*Sc/2 ]) 
~(a + b* exp[c*(z~c~)2]) 

to fitting with no 

it was found that this approach lead to essentially the same reference spaces as 
the CI-based approach when the reference space included more than 10 configu- 
rations. 

The results of  fitting the CI data to the two functional forms discussed 
previously is shown in Table 5. Both fits yield estimated full CI energies within 
1 millihartree of each other independent of the number of points used in the fit. 
The ESD + Q estimates generally lie below the other estimates. Since the actual full 
CI energy is unavailable for comparison, it is impossible to judge if the fitted 
extrapolations are more or less accurate than the Davidson-corrected estimates 
in this case. 

Compared to the convergence plots for N 2 and H 2 0  where data points were 
available at values of Sc~ as large as 0.97, there are no points beyond 2;c~ = 0.96 
in Fig. 11. This should not be interpreted as indicating that smaller reference 
spaces were used for H2CN. In reality the largest reference space contained 375 
spin-adapted configurations compared to a maximum of 136 for N2 and 123 for 
water. In general more reference configurations are required for open shell 
systems and for larger numbers of  electrons to achieve the same "quality" 
reference spaces, as measured by the 2;c~. 

The ACPF and QDVPT are closer to being size consistent than the CI 
method. Since the reference space is treated variationally, in the limit that the 
reference space becomes very large these methods will give the same results as 
CI. Both methods show less variation in the energy for small values of  22c~, as 
does the ESD + Q curve. In that same region of the plot, all three approximations 
(ACPF, QDVPT, SD + Q) clearly do a better job of approaching the full CI 
limit. For larger values of Xc~ things are less clear, at least with regard to the 
SD + Q curve which may overestimate the quadruples correction by an amount 
larger than the MR SD-CI energies underestimate the full CI. 
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hydrogen with respect to ~7c 2 for MR 
SD-CI, ACPF and QDVPT sequences 
of wavefunctions 

In the H2CN study of Chipman et al. the isotropic hyperfine splitting constant 
on hydrogen proved the most difficult for which to obtain good agreement with 
experiment. It was, thus, of interest to see if the ACPF or QDVPT methods were 
better to predict this quantity. Indeed, for small reference space, i.e. for small 
values of Sch, both methods appear to be in better agreement with the apparent 
FCI asymptotic fimit in Fig. 12. However, for larger reference spaces the reverse 
may be true, with the MR SD-CI numbers being closer to a(H)FcI. In the absence 
of an unambiguous FCI value for a(H) it is impossible to be more definite. 

Both ACPF and QDVPT values of a(H) approach the limiting value from 
above, while the MR SD-CI wavefunctions approach from below. Because 
isotropic hyperfine parameters are normally underestimated by restricted HF- 
based CI it happens that both of the nonvariational methods fortuitously are in 
better agreement with experiment than their CI counterpart. Nevertheless, if this 
cancellation of errors proved to be commonplace, the ACPF and QDVPT would 
hold some advantage in predicting experiment. The existence of what appears to 
be an inflection point in the ACPF a(H) curve may make it more difficult to 
extrapolate. Along those same lines, the QDVPT curve shows some wiggles 
which don't appear in the CI results, but that shouldn't preclude attempting to 
fit the QDVPT data. However, in this work no attempt was made to extrapolate 
the results from either method. With both the ACPF and QDVPT methods 
properties were evaluated by the finite field technique. 

For properties other than aiso the CI method may provide faster convergence 
to the full CI limit. In Fig. 13 the H2CN dipole moment convergence pattern is 
shown for all three methods. As with the quadrupole moment in N» the CI values 
oscillate for small Sc 2. The actual DZP values of the IH, 14N, and 13C isotropic 
hyperfine coupling parameters for H2CN, as well as the dipole and quadrupole 
moments are listed in Table 6 along with the ACPF and QDVPT values. 

It was not possible to complete as thorough an analysis with the larger 
[7s, 5p, 3d, 2f/4s, 3p, 2d] basis. The results which we were able to obtain are 
listed in Table 7. No abnormalities which might prevent the application of the 
extrapolation techniques discussed previously are evident. Considering the large 
increase in the number of basis functions (40 ~ 148) the hydrogen isotropic 
hyperfine and molecular dipole moment properties are remarkably similar to the 
DZP findings. With small reference spaces the isotropic hyperfine for nitrogen 
and carbon are considerably smaller than those obtained with the DZP basis. 
However, the calculations with larger reference spaces are far from converged 
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with respect to the configuration selection threshold. It may be that the estimated 
full CI values turn out to be larger than their DZP counterparts, bringing the 
theoretical calculations more in line with experiment. 

Once again the ACPF and QDVPT methods appear to approach the full CI 
limit from above, i.e. the absolute magnitude of the energy and hyperfine 
properties are larger than the full CI limit. As mentioned earlier, the ACPF and 
QDVPT techniques use a finite field approach to computing molecular proper- 
ties, whereas the CI properties are computed as an expectation value. In order to 
judge the effect of this difference we normalized the 1-reference configuration 
ACPF and QDVPT wavefunctions and computed the properties as expectation 
values. These results are listed in parentheses in Table 6. For the dipole and 
quadrupole moments the effects are on the order of 1% or less. For the hyperfine 
properties the effects are much larger, in each case tending to reduce aiso and 
bring it closer to the CI value. In spite of the substantial (>  30%) differences in 
the computed values of a(H) for small reference spaces and large selection 
thresholds, this disparity rapidly disappears as the reference space increases. 

6 Conclusion 

Through the continuing efforts of many research groups around the world, much 
progress has been made towards the goal of computing energies and properties 
"as good as" those obtained with a large basis set, full CI wavefun tion. 
However, the overwhelming numbers of configurations which must be treated in 
explicit full CI calculations severely limits the range of applicability of the 
method. Although low-level methods such as MP2 and SD-CI are often capable 
of recovering 80-90% of the correlation energy in well-behaved systems, there 
are times when this level of accuracy is insufficient. Recovery of the remaining 
correlation via brute force techniques quickly becomes prohibitive as the number 
of excitations expands enormously with each additional percent sought. 

In this work we propose a MR SD-CI scheme which seeks to reproduce the 
results of a full CI but which avoids having to deal with most of the configura- 
tions. By emphasizing the results of a sequenee of wavefunctions, it helps minimize 
the problems associated with choosing a particular set of configurations to 
populate the reference space. The scheme is computationally efficient enough to 
treat systems involving numbers of electrons and basis sets well beyond the 
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Table 6. H2CN energies and properties obtained using configuration selected calculations with a 
DZP basis" 

MR-SDCI results 
~0 b T e ~ Seleeted Energy EsD + Q a(H) a(N) a(C) Pz Oyy 

1 0.0 19 789 -93.7347 --93.7683 56.2 4.2 - 19.7 --0.973 1.471 
21 0.0 297 630 -93.7508 -93.7727 65.4 6.4 -24.7  --0.983 1.460 
76 0.0 968 617 --93.7571 -93.7735 69.6 7.9 -28.6  --0.963 1.437 

175 0.0 c 1 954 609 --93.7607 -93.7724 70.8 9.4 -28.7  --0.964 1.438 
278 0.0 c 2 884 248 --93.7620 -93.7701 72.2 9.4 --28.9 -0.961 1.434 
375 0.0 c 3 774 606 --93.7633 -93.7690 72.7 9.4 --28.9 -0.961 1.434 

MR-ACPF results 
~go b Te # Selected Energy a(H) a(N) a(C) #~ {gyy 

1 0.0 19 789 --93.7661 79.0 10.9 -31.2  -0.936 1.424 
21 0.0 297 630 --93.7702 78.4 12 .3  -34.3 -0.938 1.407 
76 1.0E -- 8 258 522 --93.7703 76.5 11.6 -30.6  -0.940 1.413 

175 1.0E -- 8 394 671 --93.7693 75.2 8.9 - 30.0 -0.943 1.412 
278 1.0E -- 8 481 405 -93.7674 73.7 9.0 --29.5 -0.953 1.420 
375 1.0E -- 8 553 354 -93.7661 72.6 9.1 --29.2 --0.957 1.425 

QDVPT results 
7Jo b T E ~ Selected Energy a(H) a(N) a(C) /t~ Oyy 

1 0.0 19 789 -93.7738 88.3 13.0 -36.1 -0.922 1.415 
21 0.0 297 630 -93.7739 81.8 13.7 -36.8 -0.938 1.393 
76 1.0E - 8 258 522 -93.7729 78.3 12 .5  -31.3 -0.934 1.406 

175 1.0E - 8 394 671 -93.7711 76.4 8.8 -30.3 -0.938 1.406 
278 1.0E - 8 481 405 -93.7686 74.3 8.9 -29.7  -0.951 1.417 
375 1.0E - 8 553 354 --93.7670 73.7 9.3 --29.2 --0.956 1.422 

aThe calculations were performed at RcN=2.350 bohr, Rcn=2.048 bohr, H C H =  118.7 ~. The 
energy is given in hartrees. The isotropic hyperfine values, a(H), a(N), and a(C) are in Gauss and the 
dipole and quadrupole moments are in atomic units 
b Size of the referenee spaee in CSF's 
c Estimated based on selected calculations down to T = 10 -8 

c u r r e n t  r a n g e  o f  exp l ic i t  ful l  CI .  I t  is a l so  t u n a b l e  in  t he  sense  t h a t  g r e a t e r  
a c c u r a c y  in  t h e  e x r a p o l a t e d  r e s u l t s  c a n  b e  a c h i e v e d  w i t h  i n c r e m e n t s  in  c o m p u t e r  
r e s o u r c e s  w h i c h  a r e  c o m p a r a t i v e l y  m o d e s t .  

W e  h a v e  d e m o n s t r a t e d  t h a t  f o r  t h r e e  s m a l l  m o l e c u l e s  (N2 ,  H 2 0 ,  a n d  H 2 C N  ) 
i t  is p o s s i b l e  t o  de f ine  a s y s t e m a t i c  s e q u e n c e  o f  w a v e f u n c t i o n s  w h i c h  e n a b l e  us  to  
e f fec t ive ly  e x t r a p o l a t e  to  t h e  ful l  C I  l imi t .  M o r e o v e r ,  t h e  d e r i v e d  s e q u e n c e  o f  
ene rg i e s  a n d  p r o p e r t i e s  se rve  as  a s e m i q u a n t i t a t i v e  i n d i c a t o r  o f  t h e  d e g r e e  o f  
c o n v e r g e n c e  in  t h e  resu l t s .  T h e  e x t r a p o l a t i o n  p r o c e d u r e  w a s  d e m o n s t r a t e d  w i t h  
a v a r i e t y  o f  ba s i s  sets  r a n g i n g  f r o m  a s i m p l e  v a l e n c e  d o u b l e  zeta to  a n  e l a b o r a t e  
p o l a r i z e d  q u a d r u p l e  zeta set  i n c l u d i n g  g f u n c t i o n s  o n  s e c o n d  p e r i o d  e l e m e n t s .  
A m o n g  t h e  s e q u e n c e s  w h i c h  w e r e  s t u d i e d  w e r e  se lec ted  a n d  u n s e l e c t e d  m u l t i r e f -  
e r e n c e  CI ,  a v e r a g e d  c o u p l e d  p a i r  f u n c t i o n a l  a n d  q u a s i d e g e n e r a t e  v a r i a t i o n a l  
p e r t u r b a t i o n  t h e o r y  w a v e f u n c t i o n s .  T h e  u s e  o f  a c o n f i g u r a t i o n  s e l e c t i o n  s c h e m e  
b a s e d  o n  s e c o n d  o r d e r  p e r t u r b a t i o n  t h e o r y  w a s  s h o w n  to  p e r m i t  t h e s e  m e t h o d  to  
b e  e x t e n d e d  to  s y s t e m s  w h i c h  w e r e  t o o  l a r g e  to  o t h e r w i s e  h a n d l e .  
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Table  7. H 2 C N  energies and  proper t ies  ob ta ined  us ing conf igura t ion  selected ca lcula t ions  wi th  a 
modif ied  cc-pVTZ basis  a 

MR-SDCI  results 

~go b Te 4k Selected Energy ESD + Q a (H)  a (N)  a(C)  #z Oyy 

I 1.0E -- 4 3 444 --93.7645 56.7 4.1 --20.9 -- 1.001 2.345 
1.0E -- 5 17 079 --93.8240 55.5 2.6 -- 19.4 - 0 . 9 9 5  2.349 
1.0E -- 6 57 976 --93.8444 55.0 2.4 -- 17.9 - 0 . 9 8 9  2.351 
1.0E -- 7 122 343 --93.8494 54.8 2.7 -- 17.2 --0.985 2.349 
1.0E -- 8 196 843 --93.8507 --93.8965 54.8 2.9 -- 17.2 --0.985 2.349 

25 1.0E -- 4 22 545 --93.7693 59.9 4.8 --22.9 - 0 . 9 8 8  2.325 
1.0E -- 5 36 123 --93.8314 58.5 4.0 --20.7 --0.985 2.328 
1.0E -- 6 91 766 --93.8582 59.1 4.1 --20.8 --0.979 2.326 
1.0E -- 7 273 072 --93.8683 60.8 4.7 --21.9 --0.969 2.315 
1.0E -- 8 792 663 --93.8721 --93.9049 62.5 4.7 --22.6 --0.969 2.311 

86 1 . 0 E - - 4  71 305 --93.7777 62.2 5.8 --24.3 --0.990 2.338 
1.0E -- 5 83 878 --93.8346 60.4 4.6 --22.0 --0.985 2.332 
1.0E -- 6 139 402 --93.8606 61.6 4.8 --22.6 --0.979 2.324 
1.0E -- 7 385 447 --93.8734 66.0 6.3 --25.4 --0.976 2.316 

146 1.0E -- 5 129 797 --93.8353 61.7 4.8 --23.0 
1.0E -- 6 183 116 --93.8605 62.3 5.1 --23.5 
1.0E - 7 446 932 --93.8747 66.8 6.0 --25.6 

M R - A C P F  results 
~/~t0 b T e # Selected Energy a (H)  a (N)  a(C)  #z Oyy 

1 1.0E - 4 3 444 --93.7952 78.0 11.1 --34.5 --0.987 2.288 
1.0E - 5 17 079 --93.8625 81.1 8.9 --31.5 --0.974 2.282 
1.0E -- 6 57 976 --93.8863 82.9 9.7 --29.7 --0.960 2.281 

(76.4) c (8.5) ( - -26.0)  ( - -0 .967)  (2.298) 

25 1 . 0 E - 4  22545 --98.7853 76.5 9.3 --31.5 --1.004 2.311 
1 . 0 E -  5 36 123 --93.8537 80.1 9.3 --29.9 --1.007 2.312 
1.0E -- 6 91 766 --93.8844 86.0 10.5 --32.2 -- 1.007 2.313 

86 1.0E -- 4 71 305 --93.7886 65.8 8.3 --24.3 --0.980 2.311 
1.0E -- 5 83 870 --93.8489 64.4 7.7 --21.5 --0.970 2.295 
1.0E -- 6 139 426 --93.8786 66.6 8.5 --22.6 --0.958 2.276 

QDVPT results 
~o b T e # Selected Energy a(H)  a (N)  a(C)  #~ Oyy 

1 1.0E -- 4 3 444 - 9 3 . 8 0 2 4  86.3 13.6 --40.0 --0.979 2.270 
1.0E -- 5 17 079 -93 .8721 93.4 10.8 --37.6 --0.963 2.258 
1.0E -- 6 57 976 -93 .8972  97.9 12.3 --36.2 --0.946 2.256 

(86.0) (10.0) ( - -29.7)  ( - -0 .958)  (2.286) 

25 1.0E -- 4 22 545 -98 .7884  81.8 10.3 -- 33.8 -- 1.012 2.310 
1.0E -- 5 36 123 -93 .8582  88.4 10.6 --32.7 -- 1.020 2.315 
1 .0E- -  6 91 766 -93 .8900  98.2 12.1 --36.2 --1.028 2.322 

a The modified cc-pVTZ basis contained extra diffuse functions and increased flexibility in the core 
regions. There were a total  of  148 basis funcUons, [7s, 5p, 3d, 2f/4s, 3p, 2d]. The calculat ions were 
performed at R c N =  2.349 bohr,  R c n =  2.063 bohr,  H C H  = 112.8 °. The energy is given in hartrees,  the 
isotropic hyperfine values, a(H),  a(N),  and a(C) are in Gauss  and the dipole and quadrupole  moments  
are  in a tomic units  
b Size of  the reference space in CSF's  
c Values in parentheses were computed  as expectat ion values 
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